
1986

N8 7- 26 700

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM

Johnson Space Center

Texas A&M University

Active Vibration Control in Microgravity Environment

Prepared by: Carl H. Gerhold, PHD, PE

Academic Rank: Associate Professor

University & Department: Texas A&M University

Department of Mechanical Engineering

NASAIJSC

Di rectorate: Engineering

Division Structures and Mechanics

Branch Loads and Structural Dynamics

JSC Colleague: A. Rodney Rocha

Date August 8, 1986

Contract #: NGT-44-O05-803

8-1



Active Vibration Control in Micro-gravity Environment

Carl H. Gerhold, PhD, PE

Associate Professor

Mechanical Engineering Department

Texas A&M University
College Station, Texas 77843

The low gravity environment of the Space Station is suitable for
experiments or manufacturing processes which require near zero-g. Such
experiments are packaged to fit into rack-mounted modules approximately
106.7 cm (42 in) wide x 190.5 cm (75 in) high x 76.2 cm (30 in) deep. The

mean gr#vitation level __ft/hse 2 Space Station is expected to be on the orderof I0- g (9.81 x i0 ). Excitations, such as crew activity or
rotating unbalance of nearby equipment can cause momentary disturbances to
the vibration-sensitive payload on the order of 0.4 g. Such disturbances
can reduce the micro-gravity environment and compromise the validity of the
experiment or process. Isolation of the vibration-sensitive payload from
structure-borne excitation is achieved by allowing the payload to float
freely within an enclosed space. Displacement-sensitive transducers
indicate relative drift between the payload and the surrounding structure.
Small air jets provide a negative thrust vector which keeps the payload
centered within the space. The mass flow rate of the air jets is

controlled such that the _'esultant acceleration of the payload is less than
a criterion level of I0- g. It is expected that any power or fluid lines
that connect the experiment to the Space Station structure can be designed
such that they transmit vibration levels within the criterion. A flexible
coiled hose such as is used to carry shop air has the requisite compliance.

An experiment has been fabricated to test the validity of the active
control process and to verify the flow and control parameters identified in
a theoretical model. Zero-g is approximated in the horizontal plane using
a low-friction air-bearing table. An analog control system has been
designed to activate calibrated air-jets when displacement of the test mass
is sensed. The experiment demonstrates that the air jet control system
introduces an effective damping factor to control oscillatory response.
The amount of damping as well as the flow parameters, such as pressure drop
across the valve and flow rate of air, are verified by the analytical
model.

NASA Colleague: A. R. Rocha/ES4/x-4393
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Active Vibration Control in

Microgravity Environment

Introduct ion

Microgravity research experiments, such as crystalline growth in zero

gravity, require a static gravitational environment on the order of 10-6 g.

Such a low gravity environment is obtained in space near the centerline of

a Space Station. In a low gravity environment, momentary disturbances,

such as thruster fire or crew pushoff introduce shocks to the vibration

sensitive experiment on the order of 3.0 x 10-3 g. [1] Rotating equipment,

such as pumps located near the experiment, may transmit steady state

vibration of 0.4 g at 10 Hertz. [2] Such disturbances alter the

microgravity environment and can degrade the validity of the experiment.

The purpose of this project is to devise and evaluate a method to reduce

the vibration transmitted from the Space Station structure to the vibration

sensitive payload. The most effective way to decouple the payload is to

allow it to float freely in space. Figure 1 is a schematic representation

of the payload suspended within an enclosure which is attached to the Space

Station structure. Unbalanced forces, whether generated internally or

externally, cause the payload to drift toward the enclosure. This relative

motion is sensed and used to activate air jets. The jets provide thrust to

stop the motion and to return the payload to a central location within the

enclosure.

External forces arise from gravity gradient over an orbit cycle and

aerodynamic drag-induced deceleration of the Space Station, and result in

long period drift between the enclosure and the payload. External forces

are also transmitted through connections such as air, fluid, or power

lines. The lines act as compliant elements which transfer structural
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vibration to the payload. Unbalanced forces are generated internally by

rotating equipment or fluid motion within the payload.

The air jet control system is required to keep the payload from contacting
the enclosure. The criterion for the air jet is that the thrust produced

by the jet results in a net acceleration of the payload less than or equal
to 10-5 g.

The sensors used to control the jets respond to velocity and displacement

of the payload. This type of control is expected to be sufficient for the

following reasons. It is assumedthat the internally generated forces are
sufficiently small that the acceleration produced by them is less than 10-5

g. However, these forces may cause the payload to drift, which drift the
air jet is intended to control. Gravity gradient is expected to be the

major long period external excitation, producing a disturbance on the order
to 10-5 g [i]. The period of this excitation is approximately 90 minutes

(one orbit cycle). Since the gravity gradient does not exceed the
allowable acceleration criterion, the air jet control which limits long

term drift of the payload keeps it essentially neutrally buoyant.

Structural vibrations of magnitude 0.4 g at 10 Hertz may be transmitted

through hoses and power lines to the payload. Compliant connections, such

as self-coiling flexible air lines, can be used to reduce the transmitted

vibration so that the steady state acceleration of the payload is on the
order of 10-5 g. The air jet control is used to limit drift resulting from

this disturbance.

Preliminary investigations, including computer simulation, indicate that

the air jet control system is feasible. However, in order to establish a

workable system it is necessary to test the concept experimentally. The

experimental setup consists of a mass constrained to move in a

one-dimensional simulated low-g environment. The displacement and velocity
of the massare monitored and used to control solenoid.activated air

valves. The first phase of the experimental program is intended to
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establish the feasibility of the air jet feed back control system concept

and to identify parameters for the air jet and the feedback control

systems.

Theoretical Background

The basic one-dimensional model is derived from the system shown in figure

1. The one-dimensional model is felt to provide sufficient detail to

identify system parameters. It is assumed that the internal forces

generated by rotating unbalance or fluid motion within the payload are

negligible in comparison to the force transmitted through the compliant

coupling to the structure. This couple between the payload and the

structure is modeled as a massless spring element. The differential

equation describing the motion of the payload is:

M# = k(y-x) + Fj (I)

where:

M = payload mass

k = equivalent stiffness of the hose or power line

x = absolute displacement of the payload

R = absolute acceleration of the payload

y = displacement of the structure

Fj= thrust exerted by the jet

1. Jet Thrust

The thrust exerted by the jet is modeled from basic Nuid dynamics

theory [3] as:

Fj = dm (x - vf)

dt

(2)
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where:

dm = mass flow rate of the air jet

dt

= velocity of the payload

vf = local flow velocity of the jet

The thrust produced always opposes motion of the mass. Whenthe mass

displacement is positive and to the right, the right side jet is activated

to produce a left pointing thrust vector. Similarly, whenthe payload is

to the left of the central position and moving toward the left, the
left side jet is activated to produce a right pointing thrust vector. This

model of the jet thrust has been verified in a static test performed at the

Shock and Vibration Laboratory at Texas A&MUniversity. The experiment

consisted of a 1.41 kg mass suspendedby wire 0.686 m. long. The air jet

impinges on the massand the angle the wire makeswith the vertical is

measured, as shownin figure 2a and 2b. Summingforces in the vertical and

horizontal direction, the expected force balance is:

Mg si n.____O d_m.mVf
cos Q = dt (3)

where:

M = mass of pendulum

0 = static angle

dm Vf
dt = momentumflux of the jet

The jet diameter is 9/32-in. (7.1 mm). The air supplied was compressedair
used throughout the building. The flow rate was varied from 2.12 x 10-3

m3/S (4.5 cfm) 7.55 x 10-3m 3/S (16.0 cfm). The results of the experiment
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are shown in figure 3 in which the angle reached by the pendulum is plotted

against flow. The relatively simple theory provides reasonable estimate

of flow rate required to produce a thrust force on the mass. The figure

shows that as the distance between the jet and the mass increases (angle

increases), the flow rate required to maintain equilibrium is greater than

the simple theory estimates. Factors contributing to this are experimental

error; the fact that the air jet impinges on the mass at an angle of

inclination, as shown in figure 2b, the thus the momentum flux is

transferred less efficiently as the angle increases; and the loss of

momentum flux due to temperature changes as the distance downstream of the

jet exit increases. While experimental error and loss of momentum flux

transfer due to impingement angle are factors particular to the static

experiment, the possible loss of momentum flux due.to heat transfer with

the surrounding air can affect the thrust in the active control project as

is indicated in the following section.

2. Jet Flow Equations

The expressions for dm and Vf are derived based on the assumption that the
dt

momentum flux is constant throughout the flow field. It is required to

know the mass flow rate and flow velocity separately because the thrust

term in equation 2 depends on the relative velocity between the jet and the

mass. The derivations for the terms are shown in Appendix A. For a

one-dimensional, isothermal jet, the mass flow rate is:

dm : 0.234 x (Mo_)I/2 (4)

dt

where:

x = distance downstream of jet exit

Mo = momentum fl ux at the jet exit

: density of air
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The momentum flux is assumed constant and equal to the momentum flux at the

jet exit, Mo, where, for a round jet:

Mo = _ Uo2R 2 (5)

where

Uo = air velocity at the jet exit (assumed uniform)

R = jet radius

The mass flow rate is evaluated at a downstream location using equation 4,

and since the momentum flux is constant, the equivalent uniform flow speed

is calculated.

3. Expected Air Consumption Parameters

The thrust required to give a 45 kg mass an acceleration of 10-5 g is

estimated to be generated by a flow rate of 2.24 x 10-5 m3/S (0.048 cfm)

through a jet of diameter 0.79 mm (1/32 in.). The pressure drop across the

valve required to produce this flow is calculated [4] to be 3.45 x 103 N/m 2

(0.5 psi). An example of a compressor that can supply such a system is a

12 V DC, 187W (1/4 HP) oil free, piston compressor rated a 3.30 x 10-4m3/S

(0.7 cfm) at 6.90 x 105 N/m 2 (100 psi). This is not expected to be a

prohibitive power requirement, even if the control system operates

continuously.

The type or frequency of excitation in the Space Station is not known.

However, in order to assess the expected performance of the air jet system,

the following example is investigated, based on the differential equation

of motion:

M_" : k (y-x) + dm (R - V )
fdt
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where the terms are defined in the previous section.

The payload mass is 45 kg and the jet uses air at 21°C (70°F) and 1.0 x 105

N/M 2 (14.7 psi), with a flow rate of 2.24 x 10 -5 m3/S through a jet of 0.79

mm diameter. The spring stiffness is 5.0 N/m (0.34 Ib/ft). This is the

measured stiffness of a 95.3 mm (3.75 in) coil diameter spiral,

self-coiling, flexible hose. The structural displacement, y, is assumed to

be sinusoidal with period of O.1/sec. The magnitude is calculated from the

acceleration magnitude of 0.4 g. The jets are spaced such that the

excursion of the mass is limited to +_ 25.4 mm (_+1.0 in). The control

mechanism thresholds are set such that the jet is activated when the mass

displacement exceeds 2.54 mm (0.10 in) or the velocity exceeds 1.0 x 10-4

m/S (3.94 x 10-3 in/S).

The mass is displaced 10.0 mm (0.40 in) and released from rest at t = O.

Without the air-jet control systems, the mass oscillates with small

amplitude at the driving frequency superimposed on a vibration at the

natural frequency of the spring-mass system. The peak acceleration of the

payload due to transmissions of the O.4g structural acceleration through

the spring is calculated to be 1.13 x 10-5 g. The natural frequency

vibration component has a period of 18 seconds, based on the mass and

stiffness values, and amplitude equal to the initial displacement. In the

absence of any control, this oscillation continues indefinitely.

With the air jet control, the response is shown in figure 4. The resultant

motion of the mass is a sinusoid that decays linearly in time. The period

of oscillation is 18 seconds, which corresponds to the natural period based

on the spring and mass. The decay rate corresponds to an equivalent

viscous damping factor of 0.0282. The time required for the mass to reach

a steady state vibration about the central location is approximately 120

seconds. Of that time, the jet is on for 48.3 seconds, or 40 percent.

Experimental Program

8-9



The first phase of the experiment is intended to demonstrate the

feasibility of the air jet control and to establish the jet flow

paramete rs.

The experimental setup consists of the following major elements: a. sensor,

b. electronic control system, c. air jets, and d. test mass. The

electronic control system and air jets are designed for Space Station

application. The sensor is a commercially available Linear Variable

Differential Transforms (LVDT). This transducer limits allowable

displacement to one dimension and thus is not applicable to Space Station

application where three degrees of translation and three degrees of

rotation are possible. The test mass is supported by an air-bearing table

and is constrained to move in the horizontal plane. The air-bearing

facility simulates zero gravity in the horizontal plane. The experimental

set up is shown schematically in figure 5.

1. Control Algorithm

The LVDT produces a voltage which is proportional in magnitude and in sign

to the displacement of the test mass. The voltage output from the LVDT is

differentiated, producing a voltage signal proportional to the velocity of

the test mass. The displacement and velocity proportional signals are each

compared to thresholds values. The purpose for the threshold is to permit

a dead band in which no control is activated. If the threshold is

exceeded, a +15 volt signal is output on the line corresponding the sign of

the input voltage, and a -15 volt signal is output on the other line. The

outputs of the threshold detectors are combined in the comparator circuit.

If the combined voltage on one of the lines is large (30v) and positive,

this indicates that the mass is displaced from the center and moving

further away. The comparator opens the relay to activate the appropriate

jet. At the same time, the timer circuit is activated which limits the

duration of the air jet pulse. If the combined voltage at the comparator

is large and negative, this indicates either that the mass is within the
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dead band or that the mass is displaced from the central position but is

tending toward it. In either of these cases, no air thrust is required.

2. Experiment Parameters

The air-bearing table is intended to provide friction-free horizontal

motion. Any friction at the air bearing surface will add damping to the

system which degrades the validity of the air jet efficiency determination.

In an effort to quantify the air bearing equivalent damping, an experiment

was run using an air bearing pad on a laboratory quality marble slab at the

Shock and Vibration Laboratory at Texas A&M. The pad was connected to

ground by springs, loaded with 90.72 kg (200 Ib) and set into free

vibration. From the logarithmic decrement, the damping coefficient, c, was

measured to be 0.342 Ns/m (1.95 x 10-3 Ib-s/in). The experiment was

repeated vertical plane to eliminate the air friction. The damping

coefficient was again found to be 0.342 N-s/m. Thus, the air film damping

is negligible in comparison to the internal damping of the springs. The

expected valve of the viscous shear damping coefficient is calculated from:

Cex p = A/_/h

where:

A _.

h =

contact area of the bearing surface

dynamic viscosity

film thickness

The bearing film thickness is on the order of 0.051 mm (0.002 in). The

expected damping coefficient is Cexp - 8.38 x 10-3 N-s/m (4.79 x 10 -5

Ib-s/in) for a bearing 0.152 m x 0.152 m (6 in x 6 in). The theoretical

coefficient is 2.5 percent of the measured coefficient, which includes the

springs and air bearing together. The theoretical value does not account

for turbulent flow or surface roughness. Thus, as a first approximation,
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it is assumed that the air bearing damping is 10 percent of the measured

coefficient, or 3.42 x 10 -2 N-s/m. The system defined in a previous

section consists of a 45 kg mass connected to a spring with stiffness 5.0

N/m. The air jet control introduces an equivalent damping factor of

0.0282. The expected damping factor for three air bearing is 1.14 x 10 -3 .

Thus, the damping introduced by the air bearing is expected to be

negligible in comparison to the damping introduced, based on the damping

coefficient assumed above by the control system.

The air-jet momentum flux, M , required to produce an acceleration of 10 -5
o

g of a 45 kg mass is 4.41 x 10 -3 N. The jets used in this experiment are

commercially available solenoid operated air valves fitted with plugs in

which a 0.799 mm (0.03125 in) hole has been drilled. The force exerted by

the flow from the jet was measured statically by impinging the flow on a

scale. The force versus pressure ratio across the jet curve is shown in

figure 6. It is found that the force decreases linearly as the distance

from the jet to the scale decreases. This indicates that the assumption of

constant momentum flux is incorrect. However, the overall percent

difference from the lowest to the highest force is approximately 25

percent. Thus, the constant momentum flux assumption is a valid first

approximation. The curve of expected force is shown in the figure. The

expected curve is derived from sharp-edged orifice flow theory [4], and is

found to provide a good estimate of the force. The transient response of

the jet was measured using a hot-wire anemometer. When the switch

activating the solenoid is closed, the response shows second order

characteristics with approximately 1.5 percent overshoot reached at 220

m-sec. This response time is a combination of the air-jet response and the

anemometer response. The anemometer response time was measured separately

and found to be approximately 150 m-sec. Thus, the response of the

anemometer is dominant in the total measured system response. As a first

approximation, the response time of the valve is assumed to be the

difference, or 70 m-sec. The air-jet, when activated, will pulse for a

predetermined time period of 0.50 sec. Thus, the response time is expected
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to have a negligible effect on the active control system performance.
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Results

The one-dimensional test set up has been fabricated and assembled on the

precision air-bearing floor in the Technical Services Facility at NASA-JSC.

The total mass of the air-bearing cart is 62 kg (137 Ib). Compliant

coupling is simulated by 2.33 mm (0.090 in) diameter wire arranged as four

cantilevered beam elements. The effective stiffness of the springs is

19.34 N/m.

It was found that the total damping in the system, including auxiliary

spring elements used to reduce rotation and lateral translation of the mass

and the friction in the LVDT and its pulleys, was greater than the force

exerted by the air jets. The free vibration of the mass is shown in figure

7. The natural frequency of the system is 0.089 Hz, and the damping factor

is 0.084. The air jet identified in the previous section produces an

equivalent damping factor of 0.0282. Since the damping in the experimental

set up is three times the damping introduced by the air jet, the effect of

the control system is expected to have negligible effect on the vibratory

response.

In order to demonstrate that the control system, the following parameters

are used. The air jet diameter is increased to 2.38 mm (3/32 in) and the

pressure drop across the jet is increased to 8.28 x 104 N/m 2

(12.0 I b/in2).

The vibrational response of the mass is shown in figure 3. It is seen that

the air jet produces an equivalent damping, which increases the damping of

the system by 0.015. In this plot, the jet, when activated, was pulsed for

0.5 second before reset. The analytical model is amended to reflect the

modified jet parameters. Figure 9 shows the estimated free vibration

response of the test mass. This plot correlates well with the measured

free vibration shown in Figure 7. Figure I0 is the estimated response with

the air-jet controller on. Again, the estimated response compares

favorably with the experimental plot of Figure 8. It is found that the

estimated effect of the air jet controller is strongly dependent on pulse

time. The plot in figure I0 is obtained with a jet pulse of 0.I second.
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This is much less than the 0.5 second pulse set on the timer of the

experimental controller. The discrepancy indicates that the air jet does

not go to full flow at the instant that the solenoid is activated.

Conclusion and Recommendations

An experimental facility incorporating air jet active vibration control has

been fabricated. The facility has been used to show that the air jet

controller effectively damps oscillations. An analytical model has been

developed which estimates the effect of the air jet controller. The model

can be used as a design tool to quantify parameters such as pressure drop,

flow rate and net acceleration of the mass under combined air jet and

spring-transmitted excitation. The model has shown that the solenoid

dynamics limit the thrust produced by the jet to 20 percent of the thrust

from an ideal valve which produces full flow when activated.

Continued work in this project will be in (1) sensor development, (2)

extension to general plane motion control, and (3) model development.

(1) Sensor development. The current LVDT will be replaced by a

non-contacting probe, such as accelerometer, ultrasonic tracker, or laser

tracker. Such a transducer eliminates the need for pulleys and thereby

reduces system friction. The transducer also permits extension of the

system to general plane motion with both translation and rotation.

(2) Extension to general plane motion. The control system will be

expanded to three-degrees-of-freedom. Sensors will be developed which

respond both to translation and to rotation of the mass. The analog

control circuitry and the air jet configuration will also be modified.

(3) Model development. The analytical model will first be refined to

resolve the discrepancy between measured and estimated jet thrust noted in

the previous section. The model will then be expanded to the general plane

motion case. The modified model will be used as a tool in the design of

the experiment.

c/
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It is expected that the same control algorithm which is obtained for plane

motion control will be applicable to the more general six-degree-of-freedom

application. Thus, the control system developed in the laboratory can be

adapted for use in the Space Station.
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Appendix A. Derivation of Jet Flow Equations

It is assumed that the momentum flux, dm Vf, for a one-dimensional,

isothermal jet is constant downstream of the jet, and equal to the momentum

flux at the jet exit, Mo. For a round jet:

Mo =_ Uo2R 2 (A-l)

where:

(_ = fluid density

R = jet radius

Uo = fluid velocity at the jet exit (assumed uniform)

Downstream of the jet exit, the jet widens, the centerline velocity

decreases and the velocity profile across the jet takes on a Gaussian

distribution [5]:

U(y)

u¢_

(A-2)

where:

U_. = centerline velocity at downstream station, x

y = radial distance from the centerline

xo = virtual origin of the jet, assumed to be at the jet exit.

K = constant
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The constant, K, is empirically derived from the jet widening rate, which

forms an included angle of 9.8 o to the radial location at which the flow

velocity is 0.5 the centerline velocity [6]. The value of K is 94.

In the fully developed region, beyond approximately 8 diameters downstream

of the jet, the centerline velocity decreases at [6]:

U___ 6.2

Uo (X/D) (A-3)

where:

D = jet exit diameter

As the jet widens and the flow speed decreases, air surrounding the jet is

entrained, such that the momentum flux remains constant.

Using the relationships obtained above in the mass flow rate equation:

oo

dtdm : I__TI_ _ U_,/_ o_i
0

it is found that, for an isothermal jet:

dm : 0.234 x (Mo_) i/2
dt

(A-4)

Since the momentum flux is constant and equal to Mo, the equivalent uniform

flow speed Vf can be calculated from

VF : Mo

dm

dt (A-5)
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